PRESENTATION SUMMARY & POWERPOINT

Potential of Canine Zona Pellucida Glycoproteins-Based Immuncontraceptive Vaccines

Satish K. Gupta and Sangeeta Choudhury, Gamete Antigen Laboratory, and Amulya K. Panda, Product Development Cell, National Institute of Immunology, New Delhi, India

Feline and canine eggs are enveloped by an acellular translucent matrix termed as zona pellucida (ZP). The ZP matrix plays a critical role in reproduction by acting as a docking site for relatively species-specific recognition and sperm binding to the oocyte, leading to successful fertilization and also protection of the embryo during early stages of development, prior to implantation. Biochemical analysis of the ZP matrix revealed that it is primarily composed of 3-5 glycoproteins depending upon the species studied. A great deal of information on their structure and function during the complex process of fertilization is available from several species (Wassarman, 1999; Spargo and Hope, 2003; Gupta et al., 2006). As zona proteins play a pivotal role during fertilization, these have been proposed as candidate antigens for development of a contraceptive vaccine. The basic principle of such a vaccine is to generate specific and adequate antibody response, which thereby interferes in sperm-egg interaction leading to inhibition in fertility.

Initially, these experiments were carried out using ZP glycoproteins isolated from porcine oocytes due to their easy accessibility from abattoirs (Kirkpatrick et al., 1996; Gupta et al., 2004). Further, the antibodies generated against porcine ZP glycoproteins showed immunological cross-reactivity with ZP from a wide variety of animal species. This has allowed heterologous immunization as an approach for development of contraceptive vaccines. However, porcine ZP has not shown very promising results with respect to their contraceptive efficacy in cats (Jewgenow et al., 2000).

In order to develop a contraceptive vaccine based on ZP glycoproteins for controlling the population of street dogs, we have cloned and expressed canine zona pellucida 2 (ZP2) and zona pellucida 3 (ZP3) in *E. coli*. The process for their large-scale production and subsequent purification was optimized (Santhanam et al., 1998; Srivastava et al., 2002). Analysis by SDS-PAGE as well as Western blot of the purified recombinant dog ZP2 revealed a major band of 70 kDa. Recombinant dog ZP3 showed a major band of 42 kDa and an additional band of 32 kDa. The purified recombinant proteins were conjugated with diphtheria toxoid (DT) used as “carrier” protein to generate antibody against “self” protein. Nondescript female dogs were immunized intramuscularly in the hind limbs at two sites with ZP2-DT and ZP3-DT conjugates employing permissible adjuvants such as Squalene and Arlacel-A. A third group of female dogs was immunized with DT as a control group. Sodium phthalyl derivative of lipopolysaccharide (SPLPS) was also included in the first injection as an additional adjuvant. Primary immunization of dogs comprised three injections of the respective proteins at monthly intervals. High antibody titers were generated against dog ZP2 and ZP3 proteins as well as the carrier, when immunized with the respective recombinant protein–DT conjugates (Srivastava et al., 2002).
2002). However, curtailment of fertility was observed only in the ZP3-DT immunized group of female dogs. Immunization of female dogs with either DT or ZP2-DT conjugate failed to block fertility and these animals conceived when mated during the period of heat with males of proven fertility. Histopathology of ovaries revealed that the block in fertility observed in the group of female dogs immunized with recombinant ZP3 conjugated to DT is probably manifested by follicular atresia and degenerative changes in the oocytes.

In several countries, including India, the increasing population of street dogs is a significant problem. These dogs are not owned by anyone. It has led to high incidence of rabies, which is a major zoonotic disease of significant public-health concern in many parts of the world, especially in developing countries, where it is endemic among dogs. Keeping in view the encouraging results with bacterially expressed recombinant dog ZP3, canine ZP3 was also expressed in baculovirus expression system with the notion that the glycosylated form of the protein may be more immunogenic and thus confer improved contraceptive potential. Ni-NTA purified recombinant dog ZP3 revealed a band of ~50 kDa by SDS-PAGE as well as Western blot analysis. As an alternate to chemical conjugation of the recombinant dog ZP3 with DT for active immunization studies, it was expressed as a fusion protein along with rabies glycoprotein–G (RV-G, an antigen capable of generating antibodies that can confer protection against rabies infection) in baculovirus expression system. Such a vaccine construct, if successful, will not only inhibit fertility in dogs but may also provide protection against rabies infection. Active immunization studies carried out in nondescript female dogs with the recombinant dog ZP3-RV-G resulted in generation of antibodies against both ZP3 and RV-G as determined by ELISA. In this group of immunized animals, 4 out of 6 animals came to heat. Out of 4 animals, 2 failed to conceive and the other 2 animals became pregnant. Immunization of female dogs with a physical mixture of recombinant dog ZP3-DT conjugate and recombinant RV-G showed promise of contraception. Only 2 immunized female dogs came into heat out of the 4 immunized animals and both failed to conceive when mated with males of proven fertility. These experiments suggest that dog ZP3 can be a promising candidate for development of a contraceptive vaccine for controlling the street dog population and encourage us to carry on large-scale efficacy trials.

To make a contraceptive vaccine based on canine ZP3 as practical and user-friendly as possible, convenient vaccine delivery systems need to be developed, with an aim toward minimizing the number of injections, preferably single inoculum. Alternate routes of immunization, such as oral delivery, should also be explored. To achieve the above, we have initiated work in our laboratory to entrap canine ZP3 in polylactide microspheres with an aim toward giving a single injection that might suffice to produce adequate antibody response for 6-9 months. Attempts are also going on to obtain recombinant dog ZP3 incorporating “promiscuous” T non-B cell epitopes. This approach will avoid chemical coupling of ZP3 with DT. Immunized animals will be devoid of high circulating antibodies against the “carrier” protein and thereby may also circumvent “carrier-mediated” suppression in the immune response sometimes observed (Sad et al., 1991). Progress in this direction will be presented. In addition, the ability of a canine ZP3-based
DNA vaccine to generate immune response in mice (Rath et al., 2003) will also be discussed.

References

Session III: What’s New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immunocontraceptive Vaccines
By Dr. S.K. Gupta

POTENTIAL OF CANINE ZONA PELLUCIDA GLYCOPROTEINS BASED IMMUNOCONTRACEPTIVE VACCINES

National Institute of Immunology, New Delhi

Steps Involved During Fertilization

- Sperm attachment
- Binding
- Acrosome reaction
- Penetration
- Fusion
- Block to polyspermy
- Depolarization

Steps:
- Zona pellucida
- Perivitelline space
- Egg
- Cortical granule
- Secretion of cortical granules
- Plasma membrane
Session III: What’s New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immunocontraceptive Vaccines
By Dr. S.K. Gupta

FERTILITY REGULATING VACCINES
Zona Pellucida as Target Antigens

- Critical role in fertilization
- Tissue and stage specific expression
- Demonstrated effect of antibodies to block fertility
- Active immunization lead to variable degree of ovarian dysfunction

Probable factors for the ovarian dysfunction
- Contamination by other ovarian associated proteins
- Adjuvants
- Oophoritogenic T cell epitopes
- Susceptibility of the animal model

Native source
a) Availability in small quantities
b) Presence of contaminating ovarian proteins – ovarian pathology

Expression in heterologous expression system
Active immunization of female baboons and bonnet monkeys with E. coliexpressed recombinant monkey ZP2 and/or ZP6 (ZP4) conjugated with DT blocks fertility (Govind and Gupta (2000) Vaccine 18: 2970; Govind et al (2002) Vaccine 21: 76)

SHORTCOMINGS OF IMMUNOCONTRACEPTIVE VACCINES FOR HUMAN USE

- Failure to Generate Adequate Protective Antibody Response in 100% of the Recipients
- Variation in the Duration of Protective Antibody Response among the Immunized Individuals

NONETHELESS, IMMUNOCONTRACEPTIVE VACCINE IS AN ATTRACTIVE PROPOSITION FOR WILDLIFE POPULATION CONTROL
Session III: What’s New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immunocontraceptive Vaccines
By Dr. S.K. Gupta

Stray dogs
An ancient canine breed known as the Pariah, which has existed all over Asia and North Africa ever since human beings started living in settlements. They are, and have always been, scavengers – that is, they live on garbage created by humans. Mongrel or mixed breed adds to stray dog population. There are approx. 0.2 to 0.4 million stray dogs in Delhi alone. Two dogs can multiply to over 300 in 3 years.

Problems caused by stray dogs
- Dog bites
- Rabies – a fatal disease which can be transmitted to humans (in late 1980s and early 1990s, 50 human deaths due to rabies in Mumbai; 215 cases of rabies death reported in Delhi in the year 2004; incidence of rabies mediated death is increasing)
- Barking and howling

Population control measures
- Catching and slaughtering not very effective in long run (Ethical considerations)
- Mass sterilisation program of stray dogs by non-government organization; under general anaesthesia; neutering; females-ovaries and uterus removed; males-testicles removed

Is an immunocontraceptive vaccine feasible that can be delivered along with rabies vaccine?

Amino Acid Sequence of Dog ZPS

<table>
<thead>
<tr>
<th>Amino Acid Sequence of Dog ZPS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DQNRGQKDGIFMVNCVSRVLTVPLGVRIN</td>
</tr>
<tr>
<td>2</td>
<td>YQSGQVYLTKSRTQNGLYNQHGLTVPR</td>
</tr>
<tr>
<td>3</td>
<td>VICTCVRQYDKNPVRKTVYRNLITYRTC</td>
</tr>
<tr>
<td>4</td>
<td>EVFVPITTSTTVLTVPLGVRIN</td>
</tr>
<tr>
<td>5</td>
<td>HHGQGQVYLTKSRTQNGLYNQHGLTVPR</td>
</tr>
<tr>
<td>6</td>
<td>AEPFRTTSTTVLTVPLGVRIN</td>
</tr>
<tr>
<td>7</td>
<td>KCECVDHIPQYDKNPVRKTVYRNLITYRTC</td>
</tr>
<tr>
<td>8</td>
<td>NETCECVDHIPQYDKNPVRKTVYRNLITYRTC</td>
</tr>
<tr>
<td>9</td>
<td>RQFGGQVYLTKSRTQNGLYNQHGLTVPR</td>
</tr>
<tr>
<td>10</td>
<td>PECFRTTSTTVLTVPLGVRIN</td>
</tr>
<tr>
<td>11</td>
<td>VQGQGQVYLTKSRTQNGLYNQHGLTVPR</td>
</tr>
<tr>
<td>12</td>
<td>PEEFRTTSTTVLTVPLGVRIN</td>
</tr>
</tbody>
</table>
Session III: What’s New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immunocontraceptive Vaccines
By Dr. S.K. Gupta

Cloning and Expression of Dog ZP2 and ZP3 in Escherichia coli

Female Dogs Immunized with r-dZP3-DT Conjugate

Antibody Titers are represented as AU X10³
Session III: What's New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immunocontraceptive Vaccines
By Dr. S.K. Gupta

Female Dogs Immunized with r-dZP2-DT Conjugate

Female Dogs Immunized with DT

Antibody Titers are represented as AU X10^3
Session III: What’s New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immunocontraceptive Vaccines
By Dr. S.K. Gupta

Effect of Immunization with r-dZP2-DT, r-dZP3-DT and DT on Ovarian Histology

Effect of Immunization with r-dZP3-DT, r-dZP2-DT and DT on Fertility in Female Dogs

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>Antibody titre range (AU X 10^3)</th>
<th>Number of matings</th>
<th>Anti dZP3 titres at the time of mating</th>
<th>Pregnancy (Number of pups)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dZP3 DT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r-dZP3-DT immunized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 1</td>
<td>0.7 - 26.0</td>
<td>10.0 - 461.0</td>
<td>1</td>
<td>~ 6.0</td>
</tr>
<tr>
<td>Dog 3</td>
<td>0.7 - 18.8</td>
<td>10.0 - 1760.0</td>
<td>1</td>
<td>~ 0.7</td>
</tr>
<tr>
<td>Dog 4</td>
<td>0.9 - 12.0</td>
<td>20.4 - 608.0</td>
<td>3</td>
<td>~ 2.0</td>
</tr>
<tr>
<td>Dog 5</td>
<td>0.7 - 93.1</td>
<td>11.4 - 1093.0</td>
<td>1</td>
<td>~ 6.8</td>
</tr>
<tr>
<td>r-dZP2-DT immunized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 6</td>
<td>1.1 - 99.2</td>
<td>13.7 - 595.0</td>
<td>2</td>
<td>~ 99.0</td>
</tr>
<tr>
<td>Dog 7</td>
<td>0.6 - 26.1</td>
<td>20.0 - 461.0</td>
<td>1</td>
<td>~ 5.0</td>
</tr>
<tr>
<td>Dog 11</td>
<td>0.7 - 12.2</td>
<td>20.0 - 474.0</td>
<td>1</td>
<td>~ 2.0</td>
</tr>
<tr>
<td>Dog 12</td>
<td>0.4 - 13.4</td>
<td>12.0 - 190.0</td>
<td>1</td>
<td>~ 2.1</td>
</tr>
<tr>
<td>DT immunized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 2</td>
<td>nd</td>
<td>4.8 - 267.0</td>
<td>2</td>
<td>nd</td>
</tr>
<tr>
<td>Dog 8</td>
<td>nd</td>
<td>4.6 - 153.0</td>
<td>1</td>
<td>nd</td>
</tr>
<tr>
<td>Dog 9</td>
<td>nd</td>
<td>10.9 - 291.0</td>
<td>1</td>
<td>nd</td>
</tr>
<tr>
<td>Dog 10</td>
<td>nd</td>
<td>12.8 - 365.0</td>
<td>1</td>
<td>nd</td>
</tr>
</tbody>
</table>

nd: Not detected; P: Pregnant; NP: Non-pregnant

Session III: What’s New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immunocontraceptive Vaccines
By Dr. S.K. Gupta

Female Dogs

Feasibility of Developing Immunocontraceptive Vaccine with Dual Efficacy to Inhibit Fertility and Provide Protection Against Rabies Infection

Cloning, Expression in Baculovirus and Purification of Recombinant Dog Zona Pellucida Glycoprotein-3 (r-dZP3)

Western blot
Session III: What’s New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immunocontraceptive Vaccines
By Dr. S.K. Gupta

Cloning and Expression in Baculovirus of Recombinant dZP3-rG Fusion Protein

Strategy for Cloning of cDNA Encoding r-dZP3-rG Fusion Protein in pAchHLTA Vector

Reactivity of Antibodies Against r-dZP3-rG Fusion Protein Using Dog Ovarian Sections

Rabies Virus Neutralizing Antibody Titers in Mice Immunized with Denatured r-dZP3-rG

<table>
<thead>
<tr>
<th>Experimental Group</th>
<th>RVNA titers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 45</td>
</tr>
<tr>
<td>r-dZP3-rG in CFA/IFA</td>
<td>70</td>
</tr>
<tr>
<td>r-dZP3-rG in TiterMax</td>
<td>13</td>
</tr>
<tr>
<td>r-dZP3-rG in Squalene and Arlacel-A</td>
<td>180</td>
</tr>
</tbody>
</table>

A: Serum from mice immunized with r-dZP3-rG
B: Immune serum co-incubated with E. coli expressed r-dZP3
Session III: What's New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immuncontraceptive Vaccines
By Dr. S.K. Gupta

Comparison of antibody response in female mice immunized with denatured r-dZP3-rG using three different adjuvants in ELISA

<table>
<thead>
<tr>
<th>Group</th>
<th>Experiment</th>
<th>Absorbance at 492 nm</th>
<th>Absorbance 492 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r-dZP3-rG in CFA/IFA</td>
<td>Preimmune (1 : 100) Day 0</td>
<td>0.59</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>1st bleed (1 : 3200) Day 45</td>
<td>1.62</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>2nd bleed (1 : 3200) Day 75</td>
<td>2.04</td>
<td>0.95</td>
</tr>
<tr>
<td>r-dZP3-rG in TiterMax</td>
<td>Preimmune (1 : 100) Day 0</td>
<td>0.53</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>1st bleed (1 : 3200) Day 45</td>
<td>0.54</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>2nd bleed (1 : 3200) Day 75</td>
<td>1.01</td>
<td>0.19</td>
</tr>
<tr>
<td>r-dZP3-rG in Squalene and Arlacel-A</td>
<td>Preimmune (1 : 100) Day 0</td>
<td>0.32</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>1st bleed (1 : 3200) Day 45</td>
<td>1.71</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>2nd bleed (1 : 3200) Day 75</td>
<td>2.14</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Figures in parentheses indicate the dilution of serum used in ELISA

Absorbance at 492 nm is the average value obtained from 5 mice/group

Summary of Active Immunization Studies in Nondescript Female Dogs

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Dogs came in heat</th>
<th>Number of matings</th>
<th>Antibody titers of 3rd bleed by ELISA (10^3)</th>
<th>Progesterone value after mating (ng/ml)</th>
<th>Outcome of mating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Anti-dZP3</td>
<td>Anti-rG</td>
<td>Anti-DT</td>
</tr>
<tr>
<td>Immunized with r-dZP3-rG</td>
<td>103 Yes</td>
<td>3</td>
<td>13.7</td>
<td>22.6</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>104 Yes</td>
<td>3</td>
<td>14.0</td>
<td>5.0</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>105 -</td>
<td>-</td>
<td>4.0</td>
<td>4.0</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>110 Yes</td>
<td>3</td>
<td>72.0</td>
<td>6.4</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>125 -</td>
<td>-</td>
<td>8.0</td>
<td>6.6</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>122 Yes</td>
<td>3</td>
<td>11.5</td>
<td>20.0</td>
<td>NA</td>
</tr>
<tr>
<td>Immunized with r-dZP3-DT-rG</td>
<td>101 Yes</td>
<td>3</td>
<td>10.9</td>
<td>7.9</td>
<td>189.5</td>
</tr>
<tr>
<td></td>
<td>106 Yes</td>
<td>1</td>
<td>6.0</td>
<td>4.6</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>124 -</td>
<td>-</td>
<td>16.7</td>
<td>11.7</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>126 -</td>
<td>-</td>
<td>4.0</td>
<td>4.0</td>
<td>10.5</td>
</tr>
<tr>
<td>Immunized with DT</td>
<td>100 Yes</td>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>81.7</td>
</tr>
<tr>
<td></td>
<td>115 Yes</td>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>67.7</td>
</tr>
<tr>
<td></td>
<td>116 Yes</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>92.2</td>
</tr>
</tbody>
</table>

The number of figures in parenthesis represents number of pups.
P: denotes for pregnancy and NP: denotes non-pregnant; NA: Not Applicable
Session III: What’s New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immunocontraceptive Vaccines
By Dr. S.K. Gupta

Salient Findings

Immunization with recombinant dog ZP3 demonstrated promise of curtailing conception in female dogs

Vaccine with dual efficacy meant for providing protection against rabies infection and curtailment of fertility needs further optimization with respect to the design of the immunogen and route of vaccine delivery

ALTERNATE APPROACHES

DNA vaccines

Direct gene transfer into mouse muscle in vivo

Genetic immunization is a simple method for eliciting an immune response

Advantages

• Purity
• Amenable to genetic manipulation
• Stability
• Episomal nature
• Humoral and cell mediated immunity
• Long-lasting memory

Is it feasible to develop DNA vaccine for immunocontraception?
Cloning of dZP3 cDNA in VR1020 vector

Humoral immune response in female mice immunized with VRdZP3 plasmid DNA and its recall with r-dZP

Isotypes of antibodies generated in response to VRdZP3 plasmid DNA immunization in mice

Saline
Th2-Th1 response

Saline + Electroporation

Gene gun
Male mice
Predominant Th2 response

Gene gun
Female mice

By Dr. S.K. Gupta

Session III: What’s New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immuncontraceptive Vaccines

By Dr. S.K. Gupta
Session III: What’s New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immunocontraceptive Vaccines
By Dr. S.K. Gupta

Reactivity of the serum samples from female mice immunized with VRdZP3 plasmid DNA with dog and bonnet monkey ZP by indirect immunofluorescence

- A and B: Immune sera from mice immunized with VR1020 vector
- A' and B': Immune sera from mice immunized with VRdZP3 plasmid DNA
- C: Immunofluorescence with serum (1:2000 dilution) obtained from mouse immunized with VRdZP3 plasmid DNA
- C': Represents the same as in C but in the presence of r-dZP3 (1.0 µg/ml)

Humoral Immune Response in Female Beagle Dogs

One injection of VR1020/VRdZP3 plasmid DNA in saline (500 µg/animal)
Boosted on day 21 with baculovirus expressed r-dZP3 (250 µg/animal) along with TiterMax.
Beagles # 1-3 (control group)
Beagles # 4-6 (experimental group)
Plasmid DNA encoding dZP3 generates humoral immune response in both male and female mice. The antibodies thus generated recognize homologous and heterologous ZP.

Generation of an immune response in female mice and dogs provides further support to the fact that plasmid DNA immunization can break immunological tolerance, in this case, to a self protein.

A dominant anti-r-dZP3 IgG1 isotype response was generated by the gene gun delivery as compared to a mixed IgG1- IgG2a isotype response upon i.m. injection, showing the importance of the mode of delivery on the type of immune response elicited.
Session III: What’s New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immuncontraceptive Vaccines
By Dr. S.K. Gupta

Rabies Virus Neutralizing Antibody (RVNA) Titers in Mice Immunized with Various rG Plasmid DNA Constructs

<table>
<thead>
<tr>
<th>Construct</th>
<th>RVNA Titers</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1020</td>
<td><5</td>
</tr>
<tr>
<td>rGVR</td>
<td>499.2</td>
</tr>
<tr>
<td>rGVRt</td>
<td>6800.1</td>
</tr>
<tr>
<td>rGVRs</td>
<td>954.5</td>
</tr>
<tr>
<td>rGVRst</td>
<td>30.6</td>
</tr>
</tbody>
</table>

(*) Represents the RVNA titer of 50, equivalent to 0.5 IU/ml, the minimum titer required for protection against rabies as recommended by WHO. Represented are: A) RVNA titers on day 45, 10 days after the second DNA booster, B) RVNA titers on day 52, 7 days after the r-rG booster.

Rath et al 2005 Virus Res 113: 143

Improved immunogenicity with polymer entrapment

In vitro release of antigen from polymer particles

SEM of PLA Microparticles
Session III: What’s New in Contraceptive Vaccines?
Potential of Canine Zona Pellucida Glycoproteins-Based Immunocontraceptive Vaccines
By Dr. S.K. Gupta

Comparison of anti-TT antibody titers from Microparticles entrapped TT, two doses of alum TT and soluble TT

Katare and Panda, Vaccine, 2006

Antibody Response at Day 15 in Mice Immunized with Recombinant dZP3 Delivered in Microspheres and with other Adjuvants

a: p value between group A and B is more than 0.05
b: p value between group A and C is more than 0.05

*Given 20 µg dZP3 on day 0
Antibody Response at Day 45 in Mice Immunized with Recombinant dZP3 Delivered in Microspheres and with other Adjuvants

<table>
<thead>
<tr>
<th>Dose</th>
<th>Mean absorbance (492 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dZP3 MS Saline* (A)</td>
<td>0.85 ± 0.15</td>
</tr>
<tr>
<td>dZP3 CFA** (B)</td>
<td>1.15 ± 0.20</td>
</tr>
<tr>
<td>dZP3 Alum** (C)</td>
<td>1.30 ± 0.25</td>
</tr>
</tbody>
</table>

*Given 20 µg dZP3 on day 0
**Given 20 µg dZP3 on day 0 and day 30

- a: p value between group A and B is less than 0.001
- b: p value between group A and C is less than 0.05

Influence of Promiscuous T Non-B Cell Epitopes

Construct 1: T-cell epitope of TT (831-845 aa)-dZP3 (23-348 aa)
Construct 2: T-cell epitope of TT (831-845 aa)-dZP3 (23-348 aa)-Bovine RNase (120-131 aa)

Restriction digestion of TT-dZP3-pQE30 plasmid

- Salt concentration
- Enzyme concentration
- Reaction time
- Incubation temperature
- gel electrophoresis
- Purified protein

Western Blot

- Protein bands
- Molecular weight markers
- Blotting buffer
- Antibody
- Secondary antibody
- Film exposure

Restriction digestion of TT-dZP3-pQE30 plasmid

- Enzyme:
 - PstI
 - HindIII
 - EcoRI
- Restriction site:
 - 5'-CGGATCCACGAGTATATAGAAGCAGATTCATTTCTAGATATTAT-3'
 - 5'-AACACACGATGTGGCAACT-3'

PCR product

- PCR conditions
- Annealing temperature
- Extension time
- Denaturation temperature

dZP3-pQE30 plasmid DNA + Primers

- Primer sequence
- Oligonucleotide synthesis
- PCR conditions
- Gel electrophoresis

TT-dZP3-pPCR-Script Vector

- Vector construction
- Insertion of fragment
- Ligation
- Transformation
- Selection
- Sequencing

PCR

- Amplification conditions
- Annealing temperature
- Extension time
- Denaturation temperature

Restriction digestion

- Enzyme:
 - PstI
 - HindIII
 - EcoRI
- Restriction site:
 - 5'-CGGATCCACGAGTATATAGAAGCAGATTCATTTCTAGATATTAT-3'
 - 5'-AACACACGATGTGGCAACT-3'

Restriction digestion of TT-dZP3-pQE30 plasmid

- Enzyme:
 - PstI
 - HindIII
 - EcoRI
- Restriction site:
 - 5'-CGGATCCACGAGTATATAGAAGCAGATTCATTTCTAGATATTAT-3'
 - 5'-AACACACGATGTGGCAACT-3'
FUTURE DIRECTIONS

WILDLIFE

- Increase the efficacy of immunocontraceptive vaccine by using multiple gamete antigens and/or hormones
- Delivery of vaccine (oral route)
- Safety protocols for vaccine delivery so as not to affect other species (humans in the context of Indian situation)
- Minimize the number of vaccine doses:
 1) Different platforms for antigen presentation such as microspheres, Virus Like Particles (VLP), etc.
 2) Employment of potent adjuvants
 3) Improvement in the carrier
- Combination vaccine with other canine infectious diseases
- Combination vaccine with other diseases that are spread by canines to humans such as rabies (Presently working on the proposition of a combination of DNA Vaccine against rabies and recombinant dog ZP3)

Acknowledgements

Sangeeta Choudhury
Amulya K. Panda
Pankaj Suman
Neelu Srivastava
Archana Rath

International Collaborators
Charles E. Rupprecht
CDC, Atlanta, USA

Funding Agencies
Department of Biotechnology
Government of India